Площадь многоугольника формула с разными сторонами. площадь многоугольника

Урок 34. Площадь многоугольника

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель.

Решения многих задач вычислительной геометрии основывается на нахождении площади многоугольника. На этом уроке мы выведем формулу для вычисления площади многоугольника через координаты его вершин, напишем функцию для вычисления этой площади.

Задача. Вычислить площадь многоугольника, заданного координатами своих вершин, в порядке их обхода по часовой стрелке.

Сведения из вычислительной геометрии

Для вывода формулы площади многоугольника нам понадобятся сведения из вычислительной геометрии, а именно, понятие ориентированной площади треугольника.

Ориентированная площадь треугольника – это обычная площадь, снабженная знаком. Знак ориентированной площади треугольника АВС такой же, как у ориентированного угла между векторами

На рис. 1 треугольник АВС – прямоугольный. Его ориентированная площадь равна

Пусть О – произвольная точка плоскости. На нашем рисунке площадь треугольника ABC получится, если из площади треугольника OBC вычесть площади OAB и OCA. Таким образом, нужно просто сложить ориентированные площади треугольников OAB, OBC и OCA. Это правило работает при любом выборе точки О.

Точно так же для вычисления площади любого многоугольника

В сумме получится площадь многоугольника, взятая со знаком плюс, если при обходе ломаной

Итак, вычисление площади многоугольника свелось к нахождению площади треугольника. Посмотрим, как выразить ее в координатах.

Векторное произведение двух векторов на плоскости есть площадь параллелограмма, построенного на этих векторах.

Векторное произведение, выраженное через координаты векторов:

Площадь треугольника будет равна половине этой площади:

В качестве точки О удобно взять начало координат, тогда координаты векторов, на основании которых вычисляются ориентированные площади, совпадут с координатами точек.

Пусть (х1, y1), (x2, у2), …, (хNN) —координаты вершин заданного многоугольника в порядке обхода по или против часовой стрелки. Тогда его ориентированная площадь S будет равна:

Это и есть наша рабочая формула, она используется в нашей программе.

Если координаты вершин были заданы в порядке обхода против часовой стрелки, то число S,вычисленное по этой формуле, получится положительным. В противном случае оно будет отрицательным, и для получения обычной геометрической площади нам необхо­димо взять его абсолютное значение.

Итак, рассмотрим программу для нахождения площади многоугольника, заданного координатами вершин.

Координаты вершин считывается из файла input.pas., хранятся в массиве А в виде записей с двумя полями. Для удобства обхода многоугольника в массиве вводится n+1 элемент, значение которого равно значению первого элемента массива.

Входные данные: 5 0.6 2.1 1.8 3.6 2.2 2.3 3.6 2.4 3.1 0.5

Выходные данные: S= 3.91

Мы решили задачу о нахождении площади многоугольника по координатам его вершин. Задачи усложняются. Если у вас есть замечания к этой статье, или пожелания, напишите в комментарии. Буду Вам очень признательна за сотрудничество.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 — 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 — 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = — 3.915.

Площадь правильного шестиугольника

Правильным шестиугольником называют шестиугольную фигуру,
которая имеет равные стороны. Углы у правильного шестиугольника также между
собой равны.

В повседневной жизни мы часто можем встретить предметы,
имеющие форму правильного шестиугольника. Это и металлическая гайка, и ячейки
пчелиных сот, и структура снежинки. Шестиугольными фигурами отлично заполняются
плоскости. Так, например, при мощении тротуарной плитки мы можем наблюдать, как
плитка укладывается одна возле другой, не оставляя пустых мест.

Свойства
правильного шестиугольника

  • Правильный шестиугольник всегда будет иметь равные углы,
    каждый из которых составляет 120˚.
  • Сторона фигуры равняется радиусу описанной окружности.
  • Все стороны в правильном шестиугольнике равны.
  • Правильный шестиугольник плотно заполняет плоскость.

Как посчитать
площадь правильного шестиугольника?

Площадь правильного шестиугольника можно рассчитать,
разбив его на шесть треугольников, каждый из которых будет иметь равные
стороны.

  1. Площадь = 1/2*периметр*апофему.
  2. Предположим, наша апофема равняется 5√3 см.

  1. Используя апофему, находим периметр: Поскольку апофема
    расположена перпендикулярно к стороне шестиугольника, то углы треугольника,
    созданного при помощи апофемы, будут равняться 30˚—60˚—90˚. Каждая сторона
    полученного треугольника будет соответствовать: x-x√3-2x,
    где короткая сторона, которая расположена напротив угла в 30˚— это x, длинная сторона,
    расположенная напротив угла в 60˚ — это x√3,
    а гипотенуза — 2x.
  2. Поскольку апофема представлена, как x√3, можно подставить ее в формулу a = x√3 и решить. Если, к примеру,
    апофема = 5√3, тогда подставим эту
    величину в формулу и получим: 5√3 см = x√3, или x = 5
    см.
  3. Итак, короткая сторона треугольника равняется 5 см.
    поскольку эта величина является половиной длины стороны шестиугольника,
    умножаем 5 на 2 и получим 10 см, которая является длиной стороны.
  4. Зная длину стороны, умножим её на 6 и получим периметр
    шестиугольника:10 см х 6 = 60 см
  5. Подставим полученные результаты в нашу формулу:

  Площадь =
1/2*периметр*апофему

  Площадь = ½*60см*5√3

Решаем:

½ * 60 см * 5√3 см =30 * 5√3
см =150 √3 см =259.8 см²

Видео о том, как найти площадь правильного шестиугольника

https://youtube.com/watch?v=dXAWHtYgFyQ

Как рассчитать площадь многоугольника с разными сторонами?

» »

Загрузка.

? Площадь любого правильного многоугольника можно вычислять по формуле S = n*a^2 / (4tg 180/n) где а длина сторона многоугольника, n -число сторон Ivantrs: разделить его на треугольники и сложить сумму площадей всех треугольников Alexander Alenitsyn: Универсальной формулы нет, ведь произвольный многоугольник не «жёсткая» фигура, его форму и площадь можно изменять, изменяя углы. Только разбиением на треугольники. Полосатый жираф Алик: Можете нарисовать треугольник или четырехугольник, в котором ВСЕ углы тупые?

Рустам Искендеров: Впрочем, если речь идёт о произвольном выпуклом («нет вогнутостей вовнутрь») многоугольнике, то необязательно, чтобы углы были только тупые; у любого выпуклого многоугольника может быть три острых внутренних угла. Для площади произвольных выпуклых многоугольников универсальной формулы нет.

Единственно возможный способ указал Ivantrs. Для правильного многоугольника — М. Мамишев. Вероятно, справа — ты: нет такой.

для многоугольников с числом сторон есть формулы, но они включают в себя углы или диагонали.

Как найти площадь многоугольника

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

1

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.

Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

2

Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.

3

Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5².  x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²

4

Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.

5

Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.

6

Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.

Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.

От суммы значений первой таблицы отнимаем сумму значений второй таблицы.

Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.

Первая полоса

Беременность

Как не набрать лишний вес во время беременности

Калькулятор для расчета площади

Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как: Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля).

Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка. Полезные калькуляторы | a= мм см м км фут ярд дюйм миля b= мм см м км фут ярд дюйм миля Результат: S= 1111 кв.мм кв.см кв.м кв.км кв.фут кв.ярд кв.дюйм кв.миля Способ нахождения площади треугольника: По трем сторонам По одной стороне и высоте, опущенной на эту сторону По двум сторонам и углу между ними a= мм см м км фут ярд дюйм миля b= мм см м км фут ярд дюйм миля c= мм см м км фут ярд дюйм миля град. рад. Результат: S= 1111 кв.мм кв.см кв.м кв.км кв.фут кв.ярд кв.дюйм кв.миля Рассчитать площадь круга, если известен: радиус круга – r диаметр круга – d r= мм см м км фут ярд дюйм миля Результат: S= 1111 кв.мм кв.см кв.м кв.км кв.фут кв.ярд кв.дюйм кв.миля Способ нахождения площади параллелограмма: По основанию и высоте параллелограмма По двум сторонам и углу между ними По двум диагоналям и углу между ними a= мм см м км фут ярд дюйм миля h= мм см м км фут ярд дюйм миля c= мм см м км фут ярд дюйм миля град.

рад. Результат: S= 1111 кв.мм кв.см кв.м кв.км кв.фут кв.ярд кв.дюйм кв.миля

Как узнать площадь многоугольника?

January 6, 2016 Обсудить 0 0 В задачах по геометрии часто требуется вычислить площадь многоугольника.

Причем он может иметь довольно разнообразную форму – от всем знакомого треугольника до некоторого n-угольника с каким-то невообразимым числом вершин. К тому же эти многоугольники бывают выпуклыми или вогнутыми. В каждой конкретной ситуации полагается отталкиваться от внешнего вида фигуры.

Так получится выбрать оптимальный путь решения задачи.

Фигура может оказаться правильной, что существенно упростит решение задачи.Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру.

Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет.

Они дают название получившейся фигуре.

Это может быть:

  1. пяти- или шестиугольник и так далее.
  2. четырехугольник;
  3. треугольник;

Такая фигура непременно будет характеризоваться двумя положениями:

  • У несмежных отсутствуют общие точки, то есть они не пересекаются.
  • Смежные стороны не принадлежат одной прямой.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым.

Отличие последнего в том, что некоторые

Формула площади многоугольника через радиус вписанной окружности

Нарисуем многоугольник A1A2A3A4A5, не обязательно правильный, но такой, в который можно вписать окружность. Напомню, что вписанной называется окружность, которая касается всех сторон многоугольника. На рисунке это зелёная окружность с центром в точке O:

Мы взяли здесь для примера 5-угольник. Но на самом деле это не имеет существенного значения, поскольку дальнейшее доказательство справедливо и для 6-угольника и для 8-угольника и вообще для любого сколь угодно «угольника».

Если соединить центр вписанной окружности со всеми вершинами многоугольника, то он разобьётся на столько треугольников, сколько вершин в данном многоугольнике. В нашем случае: на 5 треугольников. Если же соединить точку O со всеми точками касания вписанной окружности со сторонами многоугольника, то получится 5 отрезков (на рисунке снизу это отрезки OH1, OH2, OH3, OH4 и OH5), которые равны радиусу окружности и перпендикулярны сторонам многоугольника, к которым они проведены. Последнее справедливо, поскольку радиус, проведенный в точку касания, перпендикулярен касательной:

Как же найти площадь нашего описанного многоугольника? Ответ прост. Нужно сложить площади всех полученных в результате разбиения треугольников:

Рассмотрим, чему равна площадь треугольника . На рисунке снизу он выделен жёлтым цветом:

Она равна половине произведения основания A1A2 на высоту OH1, проведённую к этому основанию. Но, как мы уже выяснили, эта высота равна радиусу вписанной окружности. То есть формула площади треугольника принимает вид: , где r — радиус вписанной окружности. Аналогично находятся площади всех оставшихся треугольников. В результате искомая площадь многоугольника оказывается равна:

Видно, что во всех слагаемых этой суммы ест общий множитель , который можно вынести за скобки. В результате получится вот такое выражение:

То есть в скобках осталась просто сумма всех сторон многоугольника, то есть его периметр P. Чаще всего в этой формуле выражение заменяют просто на p и называют эту букву «полупериметром». В результате, окончательная формула принимает вид:

То есть площадь многоугольника, в который вписана окружность известного радиуса, равна произведению этого радиуса на полупериметр многоугольника. Это и есть тот результат, в которому мы стремились.

Отметит напоследок, что в треугольник, который является частным случаем многоугольника, всегда можно вписать окружность. Поэтому для треугольника эту формулу можно применять всегда. Для остальных многоугольников, с количеством сторон большим 3, сперва нужно убедиться, что в них можно вписать окружность. Если это так, можно смело использовать эту простую формулу и находить по ней площадь этого многоугольника.

Калькулятор площади неправильного многоугольника по сторонам

Вам понадобится

  • — рулетка;
  • — электронный дальномер;
  • — лист бумаги и карандаш;
  • — калькулятор.

Инструкция 1 Если вам нужна общая площадь квартиры или отдельной комнаты, просто прочтите технический паспорт на квартиру или дом, там указан метраж каждого помещения и общий метраж квартиры. 2 Для измерения площади прямоугольной или квадратной комнаты возьмите рулетку или электронный дальномер и измерьте длину стен. При измерении расстояний дальномером обязательно следите за перпендикулярностью направления луча, иначе результаты замеров могут быть искажены. 3 Затем полученную длину (в метрах) комнаты умножьте на ширину (в метрах). Полученное значение и будет площадью пола, она измеряется в квадратных метрах.

Тема: Площадь многоугольника

30.10.2012, 18:54 Знатный Перец Клуба VW Passat B5!

Правильные геометрические фигуры наоборот широко встречаются в природе. Наиболее очевидным примером являются пчелиные соты, каждая ячейка которых представляет собой гексагон.

Регистрация 09.11.2008 Адрес Россия, Брянск Возраст 35 Сообщений 5,262 Спасибо: Получено: 26 Отправлено: 48 0 Приветствую! Что то я туплю, подскажите как найти площадь неправильного многоугольника зная длины его сторон и тем самым зная его периметр!

30.10.2012, 19:11 Passat Регистрация 07.03.2010 Возраст 45 Сообщений 1,243 Спасибо: Получено: 82 Отправлено: 19 0

Сообщение от ksa Что то я туплю, подскажите как найти площадь неправильного многоугольника зная длины его сторон и тем самым зная его периметр! Привести задачу к виду криволинейной трапеции, и вычислить определенный интеграл.

Калькулятор расчета площади земельного участка неправильной формы: четырехугольник

Бесплатная консультация по телефону: 8(499)110-20-64 » » » Содержание Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны: Рассмотрим пример расчета площади четырехугольника через стороны. Дан произвольный четырехугольник со сторонами a = 5 см, b = 4 см, с = 3 см, d = 6 см.

Для начала найдем полупериметр: используем найденное значение для расчета площади: Площадь четырехугольника, заданного координатами Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула.

Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY. Дан квадрат ABCD, расположенный в системе координат XY.

Площадь неправильного шестиугольника

Существует несколько вариантов определения площади
неправильного шестиугольника:

  • Метод трапеции.
  • Метод расчета площади неправильных многоугольников при
    помощи оси координат.
  • Метод разбивания шестиугольника на другие фигуры.

В зависимости от исходных данных, которые вам будут
известны, подбирается подходящий метод.

Метод трапеции

Площадь шестиугольника, имеющего произвольную
(неправильную) форму, рассчитывается методом трапеции, суть которого состоит в
разделении шестиугольника на отдельные трапеции и последующим вычислением
площади каждой из них.

Метод с осями
координат

Кроме этого, площадь неправильного шестиугольника можно рассчитать
при помощи метода расчета площади неправильных многоугольников. Рассмотрим его
на следующем примере:

Вычисление будем выполнять методом использования
координат вершин многоугольника:

  1. На этом этапе следует сделать таблицу и записать
    координаты вершин x и y. Выбираем вершины в
    последовательном порядке по направлению против часовой стрелки, завершив конец
    списка повторной записью координаты первой вершины:

  1. Теперь следует умножить значения координаты х 1-й вершины
    на y 2-й
    вершины и продолжить таким образом умножение далее. Затем необходимо сложить
    полученные результаты. В нашем случае получилось 82:

  1. Последовательно умножаем значения координат y1-й
    вершины на значения координат х 2-й вершины. Суммируем полученные результаты. В
    нашем случае получилось 38:

  1. Вычитаем сумму, которую получили на четвертом этапе из
    суммы, которая получилась на третьем этапе: 82 – (-38) = 120

  1. Теперь необходимо разделить результат, который был
    получен на предыдущем этапе и найдем площадь нашей фигуры: S= 120/2 = 60
    см²

Метод разбивания
шестиугольника на другие фигуры

Каждый многоугольник можно разделить на несколько других
фигур. Это могут быть треугольники, трапеции, прямоугольники. Исходя из
известных данных, пользуясь формулами определения площадей перечисленных фигур,
последовательно вычисляются их площади и затем суммируются.

Некоторые неправильные шестиугольники состоят из двух
параллелограммов. Для определения площади параллелограмма следует умножить его
длину на ширину и затем сложить две уже известные площади.

Видео о том, как найти площадь многоугольника

https://youtube.com/watch?v=N8kcd6smUy4

Площадь равностороннего шестиугольника

Равносторонний шестиугольник имеет шесть равных сторон и
является правильным шестиугольником.

Площадь равностороннего шестиугольника равняется 6
площадям треугольников, на которые разбита правильная шестиугольная фигура.

Все треугольники в шестиугольнике правильной формы равны,
поэтому для нахождения площади такого шестиугольника достаточно будет знать
площадь хотя бы одного треугольника.

Для нахождения площади равностороннего шестиугольника
используется, конечно же, формула площади правильного шестиугольника, описанная
выше.

А Вы знали, как найти площадь шестиугольника? Как думаете, где эти знания пригодятся Вам в жизни? Поделитесь своим мнением в .

404 not found

Украшение жилища, одежды, рисование картин способствовало процессу формирования и накопления сведений в области геометрии, которые люди тех времён добывали опытным путем, по крупицам и передавали из поколения в поколение. Сегодня знания геометрии необходимы и закройщику, и строителю, и архитектору и каждому простому человеку в быту. Поэтому нужно учиться рассчитывать площадь различных фигур, и помнить, что каждая из формул может пригодиться впоследствии на практике, в том числе, и формула правильного шестиугольника. Шестиугольником называется такая многоугольная фигура, общее количество углов которой равно шести. Правильным шестиугольником называют шестиугольную фигуру, которая имеет равные стороны. Углы у правильного шестиугольника также между собой равны. В повседневной жизни мы часто можем встретить предметы, имеющие форму правильного шестиугольника.

Формула площади гаусса

Если требуется посчитать площадь пола более сложной конструкции, например, пятиугольной комнаты или комнаты с круглой аркой, схематично начертите эскиз на листе бумаги. Затем разделите сложную форму на несколько простых, например, на квадрат и треугольник или прямоугольник и полукруг. Измерьте при помощи рулетки или дальномера величину всех сторон получившихся фигур (для круга необходимо узнать диаметр) и занесите результаты на ваш чертеж.

5 Теперь посчитайте площадь каждой фигуры по отдельности. Площадь прямоугольников и квадратов высчитывайте перемножением сторон. Для расчета площади круга диаметр разделите пополам и возведите в квадрат (умножьте его на самого себя), затем умножьте полученное значение на 3,14. Если вам нужна только половина круга, разделите полученную площадь пополам. Чтобы рассчитать площадь треугольника, найдите Р, для этого сумму всех сторон поделите на 2.

Формула для расчета площади неправильного многоугольника

Конвертер единиц расстояния и длины Конвертер единиц площади Присоединяйтесь 2011-2019 Довжик Михаил Копирование материалов запрещено.

Далее используется соотношение из теоремы синусов — две стороны относятся друг к другу также как и синусы противолежащих им углов. Поскольку треугольник равнобедренный и сумма углов в треугольнике равна 180 градусам, угол, противолежащий радиусу вычисляется тривиально.

Дополнительные возможности калькулятора вычисления площади четырехугольника

  1. Между полями для ввода можно перемещаться нажимая клавиши «вправо» и «влево» на клавиатуре.

В онлайн калькуляте можно использовать величины в одинаквых единицах измерения! Если у вас возниели трудности с преобразованием едениц измерения воспользуйтесь конвертером единиц расстояния и длины и конвертером единиц площади.

Площадь четырехугольника Четырёхугольник — геометрическая фигура, состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), попарно соединяющих эти точки. Четырёхугольник называется выпуклым, если отрезок соединяющий любые две точки этого четырехугольника, будет находиться внутри него.

Как рассчитать площадь многоугольника с разными сторонами

К примеру, правильный пятиугольник называется пентагон, шести — гексагон, восьмиугольник — октагон, десятиугольник — декагон, одиннадцатиугольник — гендекагон, двенадцати — додекагон.

например формула брахмагупты для 4-угольника или формулы 5 и 6-угольников (приведены ) Krab Bark: Только по длинам сторон нельзя.

Любой правильный многоугольник имеет свою вписанную и описанную окружность.

При этом круг также можно представить как правильный полигон, который имеет бесконечное количество углов. Многоугольники в реальности Невыпуклые многоугольники практически не распространены в реальной жизни: они довольно редко встречаются в природе, а в рукотворном виде она выступают в роли граней деталей машин.

Многие морские организмы обладают пентасимметрией, и наиболее очевидным примером невыпуклой фигуры является морская звезда.

Правильные геометрические фигуры наоборот широко встречаются в природе.

Наиболее очевидным примером являются пчелиные соты, каждая ячейка которых представляет собой гексагон.

  1. Площадь = 1/2*периметр*апофему Площадь = ½*60см*5√3 Решаем: Теперь осталось упростить ответ, чтобы избавиться от квадратных корней, а полученный результат укажем в квадратных сантиметрах: ½ * 60 см * 5√3 см =30 * 5√3 см =150 √3 см =259.8 см² Видео о том, как найти площадь правильного шестиугольника Существует несколько вариантов определения площади неправильного шестиугольника:
  2. Подставим полученные результаты в нашу формулу:
  3. Зная длину стороны, умножим её на 6 и получим периметр шестиугольника:10 см х 6 = 60 см
  1. Метод расчета площади неправильных многоугольников
  2. Метод трапеции.

Как вычислить площадь участка с разными сторонами

» Содержание Люди, которые владеют дачей или своей землей, измеряют ее в сотках и при общении используют эту меру. Однако если возникает надобность продавать участок или заполнять какие-то документы, по правилам нужно использовать общепринятые измерения в метрах.

Здесь и пригодится знание, чему равна одна сотка. Необходимость знать точные размеры дачного участка может возникнуть по разным причинам, но способ вычисления всегда будет оставаться одинаковым.

Сотка в метрах равна 100 м кв., но площадь может быть несколько больше или меньше из-за неровностей сторон.

Для точного расчета вам понадобится лишь несколько колышков, рулетка и немного свободного времени.

Для этого нужно по углам вбить колышки и с помощью рулетки измерить длину и ширину. Если участок имеет одинаковые стороны, то надобность мерить все 4 отпадает.

Полученные данные обязательно запишите на листке бумаги. В случае неправильной формы земельного надела замерять придется все четыре показателя. К тому же для проведения подсчетов необходимо будет знать угол между сторонами. Все это сильно усложняет расчеты, поэтому при незначительных расхождениях значения округляют.

Для определения размера прямоугольника необходимо умножить ширину на длину, к примеру:

  1. S=20*50;
  2. длина – 50 м;
  3. размер (площадь) надела составляет 1000 м кв.
  4. ширина – 30 м;

Известно, что 100 м кв составляют 1 сотку.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий