Формулы вычисления площади произвольного четырёхугольника

Содержание

Определение площади

Что такое площадь? Странный вопрос — не правда ли? В обычной жизни мы привыкли к тому, что у всяких плоских фигур (таких как поверхность стола, стула, пол наших квартир и т.д.) есть не только длина и ширина, но и какая-то еще характеристика, которую мы, не задумываясь, называем площадью. А теперь вот давай задумаемся: что же все-таки такое площадь?

Давай начнем с самого простого. За основу берется тот факт, что:

Другими словами, площадь квадрата со стороной метр мы считаем одним «метром площади».

Посмотри внимательно на картинку и убедись, что там действительно нарисован — «метр квадратный»! И запомни обозначение.

А вот теперь хитрый вопрос: а что такое? Площадь квадрата со стороной? А вот и нет!

Смотри: квадрат со стороной.

А чтобы получить квадратных метра (то есть,), мы должны нарисовать, например так:

А как получить, скажем, ? Ну например так:

Да и вообще, если мы возьмем прямоугольник, у которого стороны равны метров и метров, то в этом прямоугольнике:

Поместится ровно квадратных метров. Посмотри внимательно: у нас есть «слоев», в каждом из которых ровно квадратных метров.

Значит, всего в прямоугольнике размером x поместилось квадратных метров. Вот это число, сколько квадратных метров поместилось в прямоугольнике, и есть его площадь .

А если фигура — вовсе не прямоугольник, а какая-то абракадабра?

Удивлю тебя — бывают такие ужасные абракадабры, для которых совершенно невозможно установить сколько там квадратных метров. Даже приблизительно! К сожалению нарисовать такие фигуры — невозможно.

Но они есть! Они похожи, например, на такую «расческу» с очень мелкими зубьями.

И вот, для нормальных фигур можно интуитивно (то есть для себя) считать,что площадь фигуры — это такое число, сколько в этой фигуре «поместится» квадратных единиц (метров, сантиметров и т.д.) Более строгое, «настоящее» определение площади смотри в следующих уровнях теории.

И представь себе, математики для многих фигур научились выражать площади через какие-то линейные (те, что можно измерить линейкой) элементы фигур. Эти выражения называются «формулы площади». Формул этих довольно много — математики долго старались. Ты постарайся запомнить сначала самые простые и основные формулы, а потом уже те, что посложнее.

[править] Формулы

Формулы в векторной и координатной форме

Введём обозначения:

\bar r_1=(x_1,y_1,z_1) — радиус-вектор первой точки;

\bar r_2=(x_2,y_2,z_2) — радиус-вектор второй точки;

\bar r_3=(x_3,y_3,z_3) — радиус-вектор третьей точки;

\bar r_4=(x_4,y_4,z_4) — радиус-вектор четвёртой точки;

\bar n=(A,B,C) — нормаль к плоскости, проходящей через три заданные точки;

SΔ — площадь треугольника, построенного по трём заданным точкам;

Sчетыр — площадь четырёхугольника, построенного по четырём заданным точкам.

где

Формула Брахмагупты

Рассмотрим четырёхугольники, вокруг которых можно описать окружность и у которых порядок следования вершин 1, 2, 3, 4. Для нахождения их площади можно использовать формулу Брахмагупты.

Введём обозначения:

a — длина стороны четырёхугольника, расположенной между первой и второй точками;

b — длина стороны четырёхугольника, расположенной между второй и третьей точками;

c — длина стороны четырёхугольника, расположенной между третьей и четвёртой точками;

d — длина стороны четырёхугольника, расположенной между первой и четвёртой точками;

p — полупериметр четырёхугольника, построенного по четырём заданным точкам.

где

  • Когда одна из сторон четырёхугольника стремится к нулю, тогда формула Брахмагупты превращается в формулу Герона для площади треугольника.
  • Когда четырёхугольник является прямоугольником и a≠b, тогда формула Брахмагупты превращается в формулу площади прямоугольника, Sпрямоуг=ab, где c=a, d=b, p=a+b.
  • Когда четырёхугольник является равнобедренной трапецией и b=d, тогда формула Брахмагупты превращается в формулу площади трапеции, Sравн.трап=h(a+c)/2, где h2=(p-a)(p-c), p-b=(a+c)/2.

Один из методов определения площади четырехугольника состоит в разбиении фигуры на два треугольника с помощью диагонали и в вычислении суммы площадей образовавшихся треугольников.

Как найти площадь четырехугольника – дельтоида

Многоугольник-дельтоид характеризуется наличием 2-ух пар равных сторон. Вычислить площадь такого четырехугольника рассчитывается следующим образом:

  • Известны стороны фигуры и угол, образованный сторонами разной длины:
    S = m*l*sinϕ,
    m, l – стороны дельтоида,
    ϕ – угол между ними.
  • Известны стороны фигуры и углы, образованные сторонами равной длины:
    S = m 2 *sinα/2 + l 2 *sinβ/2,
    m, l – стороны дельтоида,
    α, β – углы между равными сторонами.
  • Наличие известных диагоналей также позволяет определить площадь фигуры:
    S = d1*d2/2,
    d1, d2 – диагонали дельтоида.
  • Если в фигуру вписана окружность, то знание ее радиуса позволяет вычислить площадь дельтоида: S = (m + l)*r,
    m, l – стороны дельтоида,
    r – радиус в случае вписанной окружности.

[править] Обозначения

Введём обозначения:

a — первая сторона;

b — вторая сторона;

c — третья сторона;

d — четвёртая сторона;

α — угол между сторонами a и b;

β — угол между сторонами b и c;

γ — угол между сторонами c и d;

η — угол между сторонами a и d;

d1 — диагональ, соединяющая вершины углов α и γ;

d2 — диагональ, соединяющая вершины углов β и η;

l1 — средняя линия, соединяющая середины сторон a и c;

l2 — средняя линия, соединяющая середины сторон b и d;

φ — угол (острый) между диагоналями;

ψ — угол (острый) между средними линиями;

p — полупериметр четырёхугольника;

SΔ — площадь треугольника;

Sчетыр — площадь четырёхугольника.

Как найти площадь четырехугольника – трапеции

Данную фигуру отличает наличие параллельных 2-ух сторон. Чтобы определить площадь такого многоугольника воспользуйтесь такими параметрами:

  • Если известны величины параллельных сторон и перпендикуляра-высоты, проведенной к ним, площадь вычисляется с помощью выражения S = ((a + b)*h)/2,
    a и b – основания,
    h – перпендикуляр-высота.
  • Исходя из определения линии средины (k = (a + b)/2)), предыдущая формула приобретет следующий вид: S = k*h,
    k – линия средины.
    Известные диагонали трапеции и градусная мера угла, образованная в результате их пересечения, также помогут определить площадь фигуры: S = (d1*d2*sinβ)/2,
    d1, d2 – диагонали,
    β – угол, полученный путем их пересечения.
  • Заданы 4 стороны: S = ((m + l)√k 2 – ((m – l) 2 + k 2 – d 2) 2 /(4(m – l) 2))/2,
    m, l – стороны параллельные,
    k, d – стороны боковые.

«Хитрые вопросы о площади»

Кроме задачек, в которых просят просто найти площадь, встречаются еще всякие вопросики. Ну вот например:

Во сколько раз увеличится площадь квадрата, если его сторону увеличить в три раза?

Давай ответим на этот вопрос двумя способами. Первый способ – формальный: используем формулу площади квадрата. Итак, было , значит — площадь увеличилась в раз!

В случае с квадратами есть и второй способ «пощупать» и убедится напрямую в этом числе .

Рисуем:

Видишь, в квадрате со стороной уместилось ровно квадратов со стороной . Значит формулам действительно можно верить.

Если же у тебя не квадрат, то остается только подставлять новые значения в формулы – и не удивляйся, если вдруг числа получатся довольно большими.

2 Как найти площадь четырехугольника – трапеции

Данную фигуру отличает наличие параллельных 2-ух сторон. Чтобы определить площадь такого многоугольника воспользуйтесь такими параметрами:

  • Если известны величины параллельных сторон и перпендикуляра-высоты, проведенной к ним, площадь вычисляется с помощью выражения S = ((a + b)*h)/2,
    a и b – основания,
    h – перпендикуляр-высота.
  • Исходя из определения линии средины (k = (a + b)/2)), предыдущая формула приобретет следующий вид: S = k*h,
    k – линия средины.
    Известные диагонали трапеции и градусная мера угла, образованная в результате их пересечения, также помогут определить площадь фигуры: S = (d1*d2*sinβ)/2,
    d1, d2 – диагонали,
    β – угол, полученный путем их пересечения.
  • Заданы 4 стороны: S = ((m + l)√k2 – ((m – l)2 + k2– d2)2/(4(m – l)2))/2,
    m, l – стороны параллельные,
    k, d – стороны боковые.

Как найти площадь четырехугольника

При решении планиметрических заданий курса геометрии нередко встречается фигура с 4-мя сторонами. Да, речь идет о четырехугольнике.

Произвольный многоугольник с четырьмя углами встречается реже, чем его частные случаи, – трапеции, дельтоиды, параллелограммы.

В последнюю «группу» входят также ромбы, прямоугольники, квадраты. Рассмотрим, какие данные фигуры необходимо знать, чтобы рассчитать ее площадь. Для нахождения его площади вам потребуются диагонали фигуры, а также угол, полученный как результат их пересечения.

  1. S = (d1*d2*sinα)/2,
  2. α – угол, полученный путем их пересечения.
  3. d1, d2 – диагонали,

Если заданный четырехугольник помещен в окружность, известна длина сторон фигуры, то в определении площади многоугольника поможет соотношение: S = √(p – m)(p – k)(p – l)(p – e), p = (m + k + l + e)/2. m, k, l, e – его стороны. Данную фигуру отличает наличие параллельных 2-ух сторон. Чтобы определить площадь такого многоугольника воспользуйтесь такими параметрами:

  1. Исходя из определения линии средины (k = (a + b)/2)), предыдущая формула приобретет следующий вид: S = k*h, k – линия средины. Известные диагонали трапеции и градусная мера угла, образованная в результате их пересечения, также помогут определить площадь фигуры: S = (d1*d2*sinβ)/2, d1, d2 – диагонали, β – угол, полученный путем их пересечения.
  2. Если известны величины параллельных сторон и перпендикуляра-высоты, проведенной к ним, площадь вычисляется с помощью выражения S = ((a + b)*h)/2, a и b – основания, h – перпендикуляр-высота.
  3. Заданы 4 стороны: S = ((m + l)√k2 – ((m – l)2 + k2– d2)2/(4(m – l)2))/2, m, l – стороны параллельные, k, d – стороны боковые.

Многоугольник-дельтоид характеризуется наличием 2-ух пар равных сторон.

Вычислить площадь такого четырехугольника рассчитывается следующим образом:

  1. Известны стороны фигуры и угол, образованный сторонами разной длины: S = m*l*sinϕ, m, l – стороны дельтоида, ϕ – угол между ними.

Формулы площади геометрических фигур.

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

  • Формула площади треугольника по трем сторонам S = √p(p — a)(p — b)(p — c)
  • Формула площади треугольника по стороне и высоте Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты S = 1a · h2
  • Формула площади треугольника по двум сторонам и углу между ними Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними. S = 1a · b · sin γ2
  • Формула площади треугольника по трем сторонам и радиусу вписанной окружности Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности. S = p · r где S — площадь треугольника, a, b, c — длины сторон треугольника, h — высота треугольника, γ — угол между сторонами a и b, r — радиус вписанной окружности, R — радиус описанной окружности, p = a + b + c — полупериметр треугольника.2
  • Формула площади треугольника по трем сторонам и радиусу описанной окружности S = a · b · с4R
  • Формула площади квадрата по длине диагонали Площадь квадрата равна половине квадрата длины его диагонали. S = 1d22 где S — площадь квадрата, a — длина стороны квадрата, d — длина диагонали квадрата.
  • Формула площади квадрата по длине стороны Площадь квадрата равна квадрату длины его стороны.

    S = a2

Площадь прямоугольника равна произведению длин двух его смежных сторон S = a · b где S — Площадь прямоугольника, a, b — длины сторон прямоугольника.

  • Формула площади параллелограмма по двум сторонам и углу
  • Формула площади параллелограмма по длине стороны и высоте Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты. S = a · h

Калькулятор расчета площади земельного участка неправильной формы: четырехугольник

» » Данный онлайн калькулятор помогает произвести расчет, определение и вычисление площади земельного участка в онлайн режиме.

Представленная программа способна правильно подсказать, как выполнить расчет площади земельных участков неправильной формы

Важно! Важ участок должен приблизительно вписываться в окружность. Иначе расчеты будут не совсем точными

Указываем все данные в метрах A B, D A, C D, B C— Размер каждой стороны делянки. Согласно введен данным, наша программа в онлайн режиме выполнить расчет и определить, площадь земельных угодий в квадратных метрах, сотках, акрах и гектарах.

Методика определения размеров участка ручным методом Чтобы правильно выполнить расчет площади делянок, не нужно использовать сложные инструменты. Мы берем деревянные колышки или металлические прутья и устанавливаем их в углах нашего участка. Далее при помощи измерительной рулетки определяем ширину и длину делянки.

Как правило, достаточно выполнить замер одной ширины и одной длины, для прямоугольных или равносторонних участков.

Для примера, у нас получились следующие данные: ширина – 20 метров и длина – 40 метров. Далее переходим к расчету площади делянки.

При правильной форме участка, можно использовать геометрическую формулу определения площади (S) прямоугольника.

Согласно этой формуле, нужно выполнить умножение ширины (20) на длину (40) , то есть произведение длин двух сторон.

В нашем случае S=800 м². После того, как мы определили нашу площадь, мы можем определить количество соток на земельном участке.

Согласно общепринятым данным, в одной сотке – 100 м². Далее при помощи простой арифметики, мы разделим наш параметр S на 100. Готовый результат и станет равен размеру делянки в сотках.

Для нашего примера, этот результат – 8. Таким образом, получаем, что площадь участка составляет восемь соток.

Площадь четырехугольника по сторонам

Когда известны длины сторон фигуры, можно применить формулу площади четырехугольника по сторонам. Для применения этих расчетов потребуется найти полупериметр фигуры. Мы помним, что периметр – это сумма длин всех сторон. Полупериметр – это половина периметра. В нашем прямоугольнике со сторонами a, b, c, d формула полупериметра будет выглядеть так: Зная стороны, выводим формулу. Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны:

Рассмотрим пример расчета площади четырехугольника через стороны. Дан произвольный четырехугольник со сторонами a = 5 см, b = 4 см, с = 3 см, d = 6 см. Для начала найдем полупериметр:используем найденное значение для расчета площади:

Площадь участка сложной формы

Подумалось, что остановить их можно только написав вот такой шуточный калькулятор.

(Нажмите кнопку «Остановить» для определения площади понравившегося Вам четырехугольника с заданными Вами сторонами). Длина стороны A Длина стороны B Длина стороны C Длина стороны D Площадь неправильного четырехугольника, зная только длины сторон, вычислить нельзя. Надеюсь, эта демонстрация поможет понять это всем, кто просил создать для этого калькулятор.

Надеюсь, эта демонстрация поможет понять это всем, кто просил создать для этого калькулятор. Зачем нужно знать площадь полаОпределение площади прямоугольного помещенияРасчет площади комнаты неправильной планировкиУзнаём площадь треугольного помещенияКак рассчитать площадь стен комнатыКак рассчитать площадь стен комнаты Пропорции между площадью пола и окон Невозможно проводить ремонт напольной поверхности, не зная точную площадь пола в частном домовладении или квартире. Дело в том, что сегодня стоимость строительных материалов достаточно высокая, и каждый владелец недвижимости старается максимально сэкономить на их покупке.

Поэтому информация, как рассчитать площадь пола, не будет лишней для того, кто предпочитает делать ремонт собственноручно.

Площадь четырехугольника по сторонам

Когда известны длины сторон фигуры, можно применить формулу площади четырехугольника по сторонам. Для применения этих расчетов потребуется найти полупериметр фигуры. Мы помним, что периметр – это сумма длин всех сторон. Полупериметр – это половина периметра. В нашем прямоугольнике со сторонами a, b, c, d
формула полупериметра будет выглядеть так:
Зная стороны, выводим формулу. Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны:

Рассмотрим пример расчета площади четырехугольника через стороны. Дан произвольный четырехугольник со сторонами a
= 5 см, b
= 4 см, с
= 3 см, d
= 6 см. Для начала найдем полупериметр:
используем найденное значение для расчета площади:

Определение площади

Что такое площадь? Странный вопрос – не правда ли? В обычной жизни мы привыкли к тому, что у всяких плоских фигур (таких как поверхность стола, стула, пол наших квартир и т.д.) есть не только длина и ширина, но и какая-то еще характеристика, которую мы, не задумываясь, называем площадью. А теперь вот давай задумаемся: что же все-таки такое площадь?

Давай начнем с самого простого. За основу берется тот факт, что:

Площадь квадрата со стороной, равной единице длины, равна единице площади.

Другими словами, площадь квадрата со стороной метр мы считаем одним «метром площади».

Но писать все время «метр площади» и слишком длинно, и звучит как-то странно. И вот, математики придумали название «метр квадратный» и обозначение « »

Посмотри внимательно на картинку и убедись, что там действительно нарисован – «метр квадратный»! И запомни обозначение.

А вот теперь хитрый вопрос: а что такое ? Площадь квадрата со стороной ? А вот и нет!

Смотри: квадрат со стороной .

Пересчитай-ка сколько в нем квадратных метров? Удивительно, но получается !

А чтобы получить квадратных метра (то есть, ), мы должны нарисовать, например так:

Видишь, здесь действительно нарисовано квадратных метра?

А как получить, скажем, ? Ну например так:

Да и вообще, если мы возьмем прямоугольник, у которого стороны равны метров и метров, то в этом прямоугольнике:

Поместится ровно квадратных метров. Посмотри внимательно: у нас есть «слоев», в каждом из которых ровно квадратных метров.

Значит, всего в прямоугольнике размером x поместилось квадратных метров. Вот это число, сколько квадратных метров поместилось в прямоугольнике, и есть его площадь.

А если фигура – вовсе не прямоугольник, а какая-то абракадабра?

Можно ли узнать, сколько квадратных метров в ней находится? Можно ведь некоторые квадратные метры «порезать» , переставить и т.д….?

Удивлю тебя – бывают такие ужасные абракадабры, для которых совершенно невозможно установить сколько там квадратных метров. Даже приблизительно! К сожалению нарисовать такие фигуры – невозможно.

Но они есть! Они похожи, например, на такую «расческу» с очень мелкими зубьями.

Но мы такими «расческами» орудовать не будем, а будем рассматривать нормальные фигуры.

И вот, для нормальных фигур можно интуитивно (то есть для себя) считать ,что площадь фигуры – это такое число, сколько в этой фигуре «поместится» квадратных единиц (метров, сантиметров и т.д.) Более строгое, «настоящее» определение площади смотри в следующих уровнях теории.

И представь себе, математики для многих фигур научились выражать площади через какие-то линейные (те, что можно измерить линейкой) элементы фигур. Эти выражения называются «формулы площади». Формул этих довольно много – математики долго старались. Ты постарайся запомнить сначала самые простые и основные формулы, а потом уже те, что посложнее.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высотеПлощадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.S = 

  2. Формула площади параллелограмма по двум сторонам и углу между нимиПлощадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.S = 

  3. Формула площади параллелограмма по двум диагоналям и углу между нимиПлощадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.
    S =  1 12 
    2

    где S — Площадь параллелограмма, — длины сторон параллелограмма, — длина высоты параллелограмма,1, 2 — длины диагоналей параллелограмма, — угол между сторонами параллелограмма, — угол между диагоналями параллелограмма.

Площадь четырехугольника по четырем сторонам и двум диагоналям

Сторона aСторона bСторона cСторона dДиагональ eДиагональ fТочность вычисленияЗнаков после запятой: 2РассчитатьПлощадь save Сохранить share Поделиться extension Виджет

Вы знаете длины четырех сторон и то, что четырехугольник является вписанным в окружность. Тогда вы имеете дело с частным случаем формулы Бретшнайдера (сумма двух противолежащих углов известна и равна 180), известным как формула Брахмагупты.

, где s — полупериметр Для вычисления можно использовать калькулятор выше, введя произвольно два угла так, чтобы их сумма составляла 180. Вывод самих формул Бретшнайдера можно посмотреть .

Ну и напоследок еще раз упомяну, что зная только длины четырех сторон вычислить площадь четырехугольника нельзя, так как нельзя однозначно определить его вид — нужно еще какое-нибудь ограничивающее условие. Так как у нас на сайте довольно часто просили посчитать площадь четырехугольника только по четырем сторонам, то еще есть вот такой вот шуточный калькулятор: , который бесконечно рассчитывает такие площади.

Как найти площадь четырехугольника – трапеции

Данную фигуру отличает наличие параллельных 2-ух сторон. Чтобы определить площадь такого многоугольника воспользуйтесь такими параметрами:

  • Если известны величины параллельных сторон и перпендикуляра-высоты, проведенной к ним, площадь вычисляется с помощью выражения S = ((a + b)*h)/2,a и b – основания,h – перпендикуляр-высота.
  • Исходя из определения линии средины (k = (a + b)/2)), предыдущая формула приобретет следующий вид: S = k*h,k – линия средины.Известные диагонали трапеции и градусная мера угла, образованная в результате их пересечения, также помогут определить площадь фигуры: S = (d1*d2*sinβ)/2,d1, d2 – диагонали,β – угол, полученный путем их пересечения.
  • Заданы 4 стороны: S = ((m + l)√k 2 – ((m – l) 2 + k 2 – d 2) 2 /(4(m – l) 2))/2,m, l – стороны параллельные,k, d – стороны боковые.

Площадь четырехугольника, заданного координатами

Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула. Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY
.

Дан квадрат ABCD
, расположенный в системе координат XY
. Найти площадь фигуры, если координаты вершин A
(2;10); B
(10;8); C
(8;0); D
(0;2).

Мы знаем, что все стороны фигуры равны, и формула площади квадрата находится по формуле:
Найдем одну из сторон, к примеру, AB
:
Подставим значения в формулу:
Знаем, что все стороны одинаковые. Подставляем значение в формулу расчета площади:

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений
.

Формулы для площадей четырехугольников

Четырехугольник Рисунок Формула площади Обозначения
S = ab

a и b – смежные стороны

d – диагональ,φ – любой из четырёх углов между

S = 2R2 sin φ

Получается из верхней формулы подстановкой d=2R

R – радиус ,φ – любой из четырёх углов между

S = a ha

a – сторона,ha – , опущенная на эту сторону

S = absin φ

a и b – смежные стороны,φ – угол между ними

d1, d2 – ,

φ – любой из четырёх углов между ними

S = a2

a – сторона квадрата

S = 4r2

r – радиус

d – квадрата

S = 2R2

Получается из верхней формулы подстановкой d = 2R

R – радиус

S = a ha

a – сторона,ha – , опущенная на эту сторону

S = a2 sin φ

a – сторона,φ – любой из четырёх углов ромба

d1, d2 – 

S = 2ar

a – сторона,r – радиус

r – радиус ,φ – любой из четырёх углов ромба

a и b – основания,h – 

S = m h

m – ,h – 

d1, d2 – ,

φ – любой из четырёх углов между ними

a и b – основания,c и d  – боковые стороны

S = ab sin φ

a и b – неравные стороны,φ – угол между ними

a и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

a и b – неравные стороны,r – радиус

d1, d2 – 

Произвольный выпуклый четырёхугольник

d1, d2 – ,

φ – любой из четырёх углов между ними

,

a, b, c, d – длины сторон четырёхугольника,p – ,

Формулу называют «Формула Брахмагупты»

S = ab

гдеa и b – смежные стороны

гдеd – диагональ,φ – любой из четырёх углов между

S = 2R2 sin φ

гдеR – радиус ,φ – любой из четырёх углов между

Формула получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = absin φ

гдеa и b – смежные стороны,φ – угол между ними

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

S = a2

гдеa – сторона квадрата

S = 4r2

гдеr – радиус

гдеd – квадрата

S = 2R2

гдеR – радиус

Получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = a2 sin φ

гдеa – сторона,φ – любой из четырёх углов ромба

гдеd1, d2 – 

S = 2ar

гдеa – сторона,r – радиус

гдеr – радиус ,φ – любой из четырёх углов ромба

гдеa и b – основания,h – 

S = m h

гдеm – ,h – 

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

гдеa и b – основания,c и d  – боковые стороны

S = ab sin φ

гдеa и b – неравные стороны,φ – угол между ними

гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

гдеa и b – неравные стороны,r – радиус

гдеd1, d2 – 

Произвольный выпуклый четырёхугольник

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

,

гдеa, b, c, d – длины сторон четырёхугольника,p –

Формулу называют «Формула Брахмагупты»

S = ab

гдеa и b – смежные стороны

гдеd – диагональ,φ – любой из четырёх углов между

S = 2R2 sin φ

гдеR – радиус ,φ – любой из четырёх углов между

Формула получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = absin φ

гдеa и b – смежные стороны,φ – угол между ними

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

S = a2

гдеa – сторона квадрата

S = 4r2

гдеr – радиус

гдеd – квадрата

S = 2R2

гдеR – радиус

Получается из верхней формулы подстановкой d = 2R

S = a ha

гдеa – сторона,ha – , опущенная на эту сторону

S = a2 sin φ

гдеa – сторона,φ – любой из четырёх углов ромба

гдеd1, d2 – 

S = 2ar

гдеa – сторона,r – радиус

гдеr – радиус ,φ – любой из четырёх углов ромба

гдеa и b – основания,h – 

S = m h

гдеm – ,h – 

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

гдеa и b – основания,c и d  – боковые стороны,

S = ab sin φ

гдеa и b – неравные стороны,φ – угол между ними

гдеa и b – неравные стороны,φ1 – угол между сторонами, равными a ,φ2 – угол между сторонами, равными b.

S = (a + b) r

гдеa и b – неравные стороны,r – радиус

гдеd1, d2 – 

Произвольный выпуклый четырёхугольник

гдеd1, d2 – ,

φ – любой из четырёх углов между ними

гдеa, b, c, d – длины сторон четырёхугольника,p –

Формулу называют «Формула Брахмагупты»

Формулы площади выпуклого четырехугольника

  1. Формула площади четырехугольника по длине диагоналей и углу между ними
    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:
    S =  1 1 2 sin 
    2

    где S — площадь четырехугольника,1, 2 — длины диагоналей четырехугольника, — угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)
    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружностиS =  · 

  3. Формула площади четырехугольника по длине сторон и значению противоположных угловS = √()()()() —  cos2

    где S — площадь четырехугольника,, , , — длины сторон четырехугольника,

     =   +  +  +    — полупериметр четырехугольника,
    2
     =   +   — полусумма двух противоположных углов четырехугольника.
    2
  4. Формула площади четырехугольника, вокруг которого можно описать окружностьS = √()()()()

3 Как найти площадь четырехугольника – дельтоида

Многоугольник-дельтоид характеризуется наличием 2-ух пар равных сторон. Вычислить площадь такого четырехугольника рассчитывается следующим образом:

  • Известны стороны фигуры и угол, образованный сторонами разной длины:
    S = m*l*sinϕ,
    m, l – стороны дельтоида,
    ϕ – угол между ними.
  • Известны стороны фигуры и углы, образованные сторонами равной длины:
    S = m2*sinα/2 + l2*sinβ/2,
    m, l – стороны дельтоида,
    α, β – углы между равными сторонами.
  • Наличие известных диагоналей также позволяет определить площадь фигуры:
    S = d1*d2/2,
    d1, d2 – диагонали дельтоида.
  • Если в фигуру вписана окружность, то знание ее радиуса позволяет вычислить площадь дельтоида: S = (m + l)*r,
    m, l – стороны дельтоида,
    r – радиус в случае вписанной окружности.

Формула расчета площади неправильного многоугольника

  1. Калькулятор для расчета площади
  2. Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:
  3. Математические калькуляторы
  1. Прямоугольник;
  2. Параллелограмм;
  3. Сектор круга;
  4. Круг;
  1. Треугольник;
  2. Эллипс;
  3. Трапеция.
  4. Правильный многоугольник;

Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля).

Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка. Правильный многоугольник DeutschEnglishEspañolFrançaisРусскийУкраїнська Используя этот онлайн калькулятор, вы сможете найти площадь четырехугольника.

Формулы вычисления площади произвольного четырёхугольника

В школьных математических заданиях часто требуется определить площадь четырёхугольника.

Ниже мы изучим различные методы расчётов площади произвольных четырёхугольников, запишем формулы и рассмотрим различные вспомогательные примеры. В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

  • Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
  • Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
  • Угол между сторонами a и b будем обозначать следующей записью (a,b).
  • Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
  • Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
  • Четырёхугольник — это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
  • Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
  • Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.

Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2). Рассмотрим пример.

Площадь частных случаев четырехугольников

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Формулы площади выпуклого четырехугольника

  • Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности) Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности S = p · r
  • Формула площади четырехугольника, вокруг которого можно описать окружность S = √(p — a)(p — b)(p — c)(p — d)
  • Формула площади четырехугольника по длине диагоналей и углу между ними Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними: S = 1d1 d2 sin α2 где S — площадь четырехугольника, d1, d2 — длины диагоналей четырехугольника, α — угол между диагоналями четырехугольника.
  • Формула площади четырехугольника по длине сторон и значению противоположных углов S = √(p — a)(p — b)(p — c)(p — d) — abcd cos2θ где S — площадь четырехугольника, a, b, c, d — длины сторон четырехугольника, p = a + b + c + d2 — полупериметр четырехугольника, θ = α + β2 — полусумма двух противоположных углов четырехугольника.

Как найти площадь четырехугольника – дельтоида

Многоугольник-дельтоид характеризуется наличием 2-ух пар равных сторон. Вычислить площадь такого четырехугольника рассчитывается следующим образом:

  • Известны стороны фигуры и угол, образованный сторонами разной длины:S = m*l*sinϕ,m, l – стороны дельтоида,ϕ – угол между ними.
  • Известны стороны фигуры и углы, образованные сторонами равной длины:S = m 2 *sinα/2 + l 2 *sinβ/2,m, l – стороны дельтоида,α, β – углы между равными сторонами.
  • Наличие известных диагоналей также позволяет определить площадь фигуры:S = d1*d2/2,d1, d2 – диагонали дельтоида.
  • Если в фигуру вписана окружность, то знание ее радиуса позволяет вычислить площадь дельтоида: S = (m + l)*r,m, l – стороны дельтоида,r – радиус в случае вписанной окружности.

Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться нашим «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

В статье собраны несколько калькуляторов, вычисляющих площади неправильных четырехугольников.

Есть несколько способов найти площадь неправильного четырехугольника.

  1. Вы знаете длины диагоналей и размер угла между ними. Тогда площадь четырехугольника можно найти по формуле

Площадь выпуклого четырехугольника

  1. Вы знаете длины четырех сторон и размеры двух противолежащих углов. Тогда площадь четырехугольника можно найти по формуле Бретшнайдера.

, где s — полупериметр.

Площадь четырехугольника по четырем сторонам и двум противолежащим углам

  1. Вы знаете длины четырех сторон и длины диагоналей. Тогда площадь четырехугольника тоже можно найти по формуле Бретшнайдера.

, где s — полупериметр

Площадь четырехугольника по четырем сторонам и двум диагоналям

  1. Вы знаете длины четырех сторон и то, что четырехугольник является вписанным в окружность. Тогда вы имеете дело с частным случаем формулы Бретшнайдера (сумма двух противолежащих углов известна и равна 180), известным как формула Брахмагупты.

, где s — полупериметр

Для вычисления можно использовать калькулятор выше, введя произвольно два угла так, чтобы их сумма составляла 180.

Вывод самих формул Бретшнайдера можно посмотреть здесь.

Ну и напоследок еще раз упомяну, что зная только длины четырех сторон вычислить площадь четырехугольника нельзя, так как нельзя однозначно определить его вид — нужно еще какое-нибудь ограничивающее условие. Так как у нас на сайте довольно часто просили посчитать площадь четырехугольника только по четырем сторонам, то еще есть вот такой вот шуточный калькулятор: Площадь неправильного четырехугольника с заданными сторонами, который бесконечно рассчитывает такие площади.

Вывод формул для площадей четырехугольников

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий